Consider a H\"older continuous potential $\phi$ defined on the full shift$A^\nn$, where $A$ is a finite alphabet. Let $X\subset A^\nn$ be a specifiedsofic subshift. It is well-known that there is a unique Gibbs measure$\mu_\phi$ on $X$ associated to $\phi$. Besides, there is a natural nestedsequence of subshifts of finite type $(X_m)$ converging to the sofic subshift$X$. To this sequence we can associate a sequence of Gibbs measures$(\mu_{\phi}^m)$. In this paper, we prove that these measures weakly convergeat exponential speed to $\mu_\phi$ (in the classical distance metrizing weaktopology). We also establish a strong mixing property (ensuring weakBernoullicity) of $\mu_\phi$. Finally, we prove that the measure-theoreticentropy of $\mu_\phi^m$ converges to the one of $\mu_\phi$ exponentially fast.We indicate how to extend our results to more general subshifts and potentials.We stress that we use basic algebraic tools (contractive properties of iteratedmatrices) and symbolic dynamics.
展开▼
机译:考虑在全移位$ A ^ \ nn $上定义的H \“较旧的连续势$ \ phi $,其中$ A $是有限字母。令$ X \ subset A ^ \ nn $是指定的子移位。众所周知,在与$ \ phi $关联的$ X $上有一个唯一的吉布斯度量$ \ mu_ \ phi $,此外,自然存在一个有限类型为$(X_m)$的子移位的自然嵌套序列,收敛到sofic子移位$ X $。对于这个序列,我们可以将一系列Gibbs度量$(\ mu _ {\ phi} ^ m)$关联起来。在本文中,我们证明了这些度量将指数速度微弱地收敛到$ \ mu_ \ phi $(在我们还建立了$ \ mu_ \ phi $的强混合特性(确保弱Bernoullicity),最后证明了$ \ mu_ \ phi ^ m $的量度理论熵收敛到$ \ mu_ \ phi $呈指数级增长。我们指出如何将结果扩展到更一般的子移位和势。我们强调,我们使用基本的代数工具(迭代矩阵的收缩性质)和符号动力学。
展开▼